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ABSTRACT

Clinical and epidemiologic investigations are paying increasing attention to the critical constructs
of “representativeness” of study samples and “generalizability” of study results. This is a laudable
trend and yet, these key concepts are often misconstrued and conflated, masking the central
issues of internal and external validity. The authors define these issues and demonstrate how they
are related to one another and to generalizability. Providing examples, they identify threats to
validity from different forms of bias and confounding. They also lay out relevant practical issues in
study design, from sample selection to assessment of exposures, in both clinic-based and
population-based settings. Neurology® 2012;78:1886–1891

GLOSSARY
AD � Alzheimer disease; ADRC � Alzheimer’s Disease Research Center; PD � Parkinson disease.

Only to the extent we are able to explain empirical facts can we obtain the major objective of
scientific research, namely not merely to record the phenomena of our experience, but to learn
from them, by basing upon them theoretical generalizations which enable us to anticipate new
occurrences and to control, at least to some extent, the changes in our environment.1(p12)

“This study sample is not representative of the population!” “Our results are not generalizable …”
Such comments are increasingly familiar but what exactly do they mean? How do study design,
subject ascertainment, and “representativeness” of a sample affect “generalizability” of results? Do
study results generalize only from statistically drawn samples of a common underlying population?
Has “lack of generalizability” become the low-hanging fruit, ripe for plucking by the casual critic?

INTERNAL AND EXTERNAL VALIDITY Confusion around generalizability has arisen from the conflation
of 2 fundamental questions. First, are the results of the study true, or are they an artifact of the way the study
was designed or conducted; i.e., is the study is internally valid? Second, are the study results likely to apply,
generally or specifically, in other study settings or samples; i.e., are the study results externally valid?

Thoughtful study design, careful data collection, and appropriate statistical analysis are at the core of any
study’s internal validity. Whether or not those internally valid results will then broadly “generalize,” to other
study settings, samples, or populations, is as much a matter of judgment as of statistical inference. The
generalizability of a study’s results depends on the researcher’s ability to separate the “relevant” from the
“irrelevant” facts of the study, and then carry forward a judgment about the relevant facts,2 which would be easy if
we always knew what might eventually turn out to be relevant. After all, we generalize results from animal studies to
humans, if the common biologic process or disease mechanism is “relevant” and species is relatively “irrelevant.” We
also draw broad inferences from randomized controlled trials, even though these studies often have specific inclu-
sion and exclusion criteria, rather than being population probability samples. In other words, generalization is the
“big picture” interpretation of a study’s results once they are determined to be internally valid.

SAMPLING AND REPRESENTATIVENESS The statistical concepts of sampling theory and hypothesis
testing have become intermingled with the notion of generalizability. Strict estimation of quantities based on
a probability sample of a “population,” vs assessing all members of that population, remained an object of
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considerable argument among statisticians until the
early 20th century.3 Sampling was adopted of neces-
sity because studying the entire population was not
feasible. Fair samples must provide valid estimates of
the population characteristics being studied. This
quite reasonable concept evolved in common usage
so that “population” became synonymous with “all
persons or all cases.” It followed that to achieve rep-
resentative and generalizable sample estimates, a
probability sample of “all” must be drawn. Logically,
then, “all” must somehow be enumerated before rep-
resentative samples can be drawn. The bite of the
vicious circle becomes obvious when “all” literally
means all in a country or continent. Yet enumeration
may be achievable when care is taken to establish
more finite population boundaries.

Statisticians Kruskal and Mosteller3–6 conducted a
detailed examination of nonscientific, “extrastatistical
scientific,” and statistical literature to classify uses of the
term representative sample or sampling. Those meanings
are 1) “general, unjustified acclaim for the data”; 2) “ab-
sence (or presence) of selective forces”; 3) “mirror or
miniature of the population”; 4) “typical or ideal case
… that represents it (the population) on average”; 5)
“coverage of the population … (sample) containing at
least one item from each stratum …”; 6) “a vague term
to be made precise” by specification of a particular sta-
tistical sampling scheme, e.g., simple random sampling.
In statistical literature, representative sampling mean-
ings include a) “a specific sampling method”; b) “per-
mitting good estimation”; and c) “good enough for a
particular purpose.”4 The conflicts and ambiguities
among the above uses are obvious, but how do we seek
clarity in our research discourse?

POPULATIONS, CLINICS, AND BOUNDARIES
So is there in fact any value to population-based studies
(Indeed there is!), and if so, how should we define a
“population”? We first define it by establishing its
boundaries (e.g., counties, insurance memberships,
schools, voter registration lists). The population is made
up entirely of members with disease (cases) and mem-
bers without disease (noncases), leaving nobody out.
Ideally, we would capture and study all cases, as they
occur. As a comparison group, we would also include
either all noncases, or a probability sample of non-
cases.7 The choice of “boundaries” for a study popu-
lation influences internal and external validity. If we
deliberately or inadvertently “gerrymander” our
boundaries, so that the factor of interest is more (or
less) common among cases than among noncases, the
study base will be biased and our results will be spu-
rious or misleading.

Adequately designed population-based studies
minimize the possibility that selection factors will

have unintended adverse consequences on the study
results. Further, since any effect we might measure
depends as much on the comparison group as it does
on the case group, appropriate selection is no less
important for the noncases than it is for cases. This is
true whether the study is clinic-based or population-
based. Population-based research anchors the com-
parison group to the cases.

Clinic-based investigations are exemplified by
those conducted at Alzheimer’s Disease Research
Centers (ADRCs). They typically examine high-risk,
family-based, clinic-based, or hospital-based groups,
to observe association with treatment or disease. This
is an efficient means to facilitate in-depth study of
“clean” diagnostic subgroups. The external validity
of these studies rests on the judgment of whether the
subject selection process itself could have spuriously
influenced the results. This determination is often
harder in clinic-based studies than in population-
based studies. Replication in an independent sample
is therefore key, but replication is more elusive and
difficult with clinic-based studies, as we discuss later.

Regardless of whether the study sample is clinic-
based or population-based, how well and completely
we identify “disease” (including preclinical or asymp-
tomatic disease), not only in our case group, but also
among those in our comparison group, can adversely
impact results. For example, consider a study of Alz-
heimer disease (AD) in which, unbeknownst to the
subjects as well as the investigators, the cognitively
normal control group includes a large proportion of
persons with underlying AD pathology. The result-
ing diagnostic misclassification, caused by including
true “cases” among the noncases, would spuriously
distort and weaken the observed results. This distor-
tion can happen in clinic-based or population-based
studies; it is a matter of internal validity tied to diag-
nostic accuracy, rather than an issue of representa-
tiveness or generalizability.

BIAS Bias causes observed measurements or results
to differ from their true values because of systematic,
but unintended, “errors,” for example, in the way we
ascertain and enroll study subjects (selection bias), or
the way we collect data from them (information
bias). Statistical significance of study results, regard-
less of p value, is completely irrelevant as a means of
evaluating results when bias is active.

Selection bias. Selection bias is often subtle, and re-
quires careful thought to discern its potential effect
on the hypotheses being tested. For example, would
selection bias render clinic-based ADRC study re-
sults suspect, if not invalid? Unfortunately, the
answer is not simple; it depends on what is being
studied and whether “selection” into the ADRC
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study distorts the true association. There are numer-
ous advantages to recruiting study participants from
specialized memory disorder clinics, as in the typical
ADRC. Both AD cases and healthy controls are se-
lected (as volunteers or referrals) under very specific
circumstances that ensure their contribution to AD
research. They either have (cases) or do not have
(controls) the clinical/pathologic features typical of
AD. Cases fulfill the research diagnostic criteria for
AD, they have “reliable informants” who will accom-
pany them to clinic visits; neither cases nor controls
can have various exclusionary features (e.g., comor-
bid stroke or major psychiatric disorder); all are mo-
tivated to come to the clinic and participate fully in
the research, including neuroimaging and lumbar
puncture; many are eager to enter clinical trials, and
many consent to eventual autopsy. AD cases who fit
the above profile are admirable for their enthusiasm
and altruism, but may not be typical, nor a probabil-
ity sample of all AD cases in the population base
from whence they came. The differential distribution
of study factors between AD cases who did and did
not enroll could give us an indication of whether bias
may be attenuating or exaggerating the specific study
results, if we were able to obtain that information.
Therefore, the astute reader asks: “Can the underly-
ing population base, from which the subjects came,
be described? Might the population base’s estab-
lished boundaries or inclusion characteristics have in-
fluenced the results? Was subject enrollment in any
way influenced by the factors being studied?” In a
clinic-based study it is seldom easy to describe the
unenrolled cases (or unenrolled noncases) from the
underlying population base in order to make such
comparisons. It helps internal validity very little to
claim that the enrollees’ age, race, and sex distribu-
tions are in similar proportions to the population of
the surrounding county, if age, race, and sex have
little to do with the factor being studied, and if par-
ticipation is differentially associated with the factors
being studied.

Note that population-based studies are not inher-
ently protected from bias; individuals sampled from
the community, who are not seeking services, may con-
sent or refuse to participate in research, and their will-
ingness to participate is unlikely to be random. If we
were concerned about selection bias in a study examin-
ing pesticide exposure as a risk factor for Parkinson dis-
ease (PD), we might ask, “Were PD cases who had not
been exposed to pesticides more (or less) likely to refuse
enrollment in our study than PD cases who had been
exposed?”

Selection bias may be not just inadvertent but also
unavoidable. Some years ago, a startling finding8 was
reported that AD cases who volunteered or were re-

ferred to an ADRC were significantly more likely to
carry the APOE*4 genotype than were newly recog-
nized AD cases captured through surveillance of a
health maintenance organization population base
within the same metropolitan area. The ADRC sam-
ple had yielded a biased overestimate of APOE*4 al-
lele frequency, and of its estimated relative risk,
because ADRC cases were inadvertently selected on
the basis of age, and it was unnoticed that the likeli-
hood of carrying an APOE*4 allele decreases with
age. There is no way the ADRC investigators could
have detected this inadvertent selection bias had they
not also had access to a population sample from the
same base. A later meta-analysis of APOE*4 allele
effects quantified the relationship between age and
risk of AD associated with APOE alleles, and showed
that AD risk due to APOE*4 genotype is lower in
population samples than in specialty clinic samples.9

APOE allele frequency also could be influenced by
study recruitment. Family history of AD seems to
promote participation in both clinical and
population-based studies involving memory loss, and
is also associated with APOE*4 frequency, thereby
potentially biasing the magnitude of APOE effect.

Survival bias is a form of selection bias that is
beyond the control of the selector. For example,
some African populations have high APOE*4 fre-
quency but have not shown an elevated association
between APOE*4 and AD.10,11 While there could be
multiple reasons for this paradox, one possibility is
that individuals with the APOE*4 genotype had died
of heart disease before growing old enough to de-
velop dementia.

Prevalence bias (length bias) is similar to survival
bias. In the 1990s, numerous case-control studies
showed a protective effect of smoking on AD occur-
rence.12 Assume that both AD and smoking shorten
life expectancy and that AD cases enrolled in those
studies some time after symptom onset. If age alone
was the basis for potential selection bias, smoking
should cause premature mortality equally among
those who are and those who are not destined to
develop AD. However, there is another aspect of se-
lection bias called prevalence or length bias: at any
given time, prevalent, i.e., existing, cases are those
whose survival with disease (disease duration) was of
greater length. If smokers with AD die sooner after
AD onset than nonsmokers with AD, those prevalent
AD cases available for study would “selectively” be
nonsmokers. A scenario known as “competing risks”
occurs when smoking influences the risk both of
death and of AD.13 This would enhance the observed
excess of smoking among “controls” and thereby in-
flate the apparent protective association between
smoking and AD. Subsequently, longitudinal studies
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of smokers and nonsmokers showed an increased risk
of AD incidence associated with smoking,12 suggest-
ing that selection bias might have explained the ear-
lier cross-sectional study results.

Information bias. Information bias (data inaccuracy)
can occur if we measure or determine the outcome or
the exposure with substantial error or if the outcome
or exposure is measured differently between compar-
ison groups. Here, the reader must ask “Was infor-
mation on the study factors and covariates gathered
in a fair and equal manner for all subjects?” For ex-
ample, suppose we obtain the history of previous
head trauma, from spouses of the cases, but by self-
report from the controls. The frequency of head trauma
could be systematically different between groups be-
cause of whom we asked, rather than because of their
true occurrence. Many earlier case-control studies
showed an association between AD and previous his-
tory of head trauma.14 This finding was not replicated
in a subsequent study based on prospective data from a
comprehensive population-based record-linkage sys-
tem.15 Here, data about head injury were recorded in
the same way from all subjects before the onset of de-
mentia; when both selection bias (including length bias)
and information bias were eliminated, the association
was no longer present. More recently the issue has raised
its battered head once again, but such studies should
also be mindful of the methodologic lessons of the past.

CONFOUNDING Having done our best to avoid
bias, how do we account for the simultaneous effects
of other factors that could also cause the disease?
Consider a study of diabetes as a risk factor for cogni-
tive decline. Both diabetes and cognitive decline are
associated with age, family history, and cerebrovascu-
lar disease. The effects of these other factors could
distort our results, if they were unequally distributed
between those with and without diabetes. This mix-
ing of effects is called confounding. Similarly, in de-
signing a study examining pesticide exposure as a risk
factor for PD, we would be concerned about other
risk or protective factors for PD which might them-
selves be associated with pesticide use.16 A common
additional exposure in rural farming areas is head
trauma,17 which arguably may increase risk of PD.18

If head trauma was a causal risk factor and was dis-
tributed unequally between the pesticide-exposed
and nonexposed groups, a spurious impression could
be created about the risk associated with pesticide
exposure.

If we proactively collected data on potential con-
founders, their effects could be “adjusted for” (equal-
ized statistically between comparison groups) in the
analysis, and can be similarly be “adjusted” in repli-
cation studies. Adjustment indicates ceteris paribus

(holding all else constant): it statistically equalizes or
removes the effect of the confounding factors (e.g.,
head trauma) so that the factor of interest (e.g., pesti-
cide exposure) can be evaluated for its own effect.
Note: bias (unlike confounding) can rarely be ad-
justed away.

REPLICATION Replication of results in indepen-
dent samples supports both the internal validity and
the generalizability of the original finding, and is
now required for publication of genetic association
studies. If 2 similar studies’ results do not agree, one
does not necessarily refute the other; however, several
similar studies failing to replicate the original would
weigh heavily against the original result. We do not
expect all risk factor studies to have identical results
because risk factor frequencies may be differentially
distributed among populations. Sample variability
does not rule out generalizability, a priori, but the
potential effects of bias and confounding must not be
ignored.

GENERALIZABILITY AND POWER Finally, an-
other issue often wrongly subsumed under generaliz-
ability is related to the statistical power to observe an
association if one truly exists. For example, a study of
head trauma as a risk factor for dementia should be
carried out in a sample where there is both sufficient
head trauma and sufficient dementia for an associa-
tion (if present) to be detected. A sample of young
football players may have the former but not the lat-
ter19; a sample of elderly nuns20 may have the latter
but not the former; a sample of retired football play-
ers may have both21; a sample of aging military veter-
ans may also have both, but there may be potential
confounding factors associated with military service,
such as other injuries, depression, or post-traumatic
stress.22 Thus, studies in different samples may not
replicate one another’s results with regard to head
trauma and dementia not because the association
changes but because of varying exposure or outcome
frequency.

THE SMOKING GUN We close with the one of the
most influential articles of the 20th century, to dem-
onstrate how even very narrowly defined study sam-
ples may provide widely generalizable results if
conducted with an eye to rigorous internal validity.
Entitled “The mortality of doctors in relation to their
smoking habits: a preliminary report,”23 this 1954
article by Doll and Hill concerned the association
between lung cancer and cigarette smoking in British
physicians. All 59,600 physicians in the Medical
Register at the time were sent a questionnaire on
their smoking habits. The investigators excluded
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physicians who did not return usable responses, and
also women physicians, and physicians aged �35
years, because of their low expected frequency of
lung cancer deaths. The remaining sample was a
male, physician cohort of 24,389, about 40% of
those in the Medical Register. During the 29-month
follow-up, investigators observed only 36 confirmed
lung cancer deaths, occurring at rates of 0.00 per
1,000 in nonsmokers, and 1.14 per 1,000 among
smokers of 25 or more grams of tobacco per day. The
lung cancer death rate was dose-dependent on
amount smoked, but the same relationship with to-
bacco dose was observed neither for 5 other disease
comparison groups, nor for all causes of death. Fur-
ther, study cohort had an all-cause death rate of 14.0
per 1,000 per year as compared to 24.6 per 1,000 for
men of all social classes and similar age.23

Surely, that study provided a veritable feast of
low-hanging fruit for critics focused on generalizabil-
ity. With such a select study sample, would the re-
sults not be so specific and isolated that none would
generalize to groups other than male British physi-
cians? Undaunted, Doll and Hill focused on internal
validity, considering whether their study-defined
boundaries and method of subject selection could
have created a spurious association between smoking
and lung cancer death. They reasoned that the ini-
tially nonresponding physicians may have over-
represented those already close to death, causing the
observed death rate in the short term to be lower
than the general population. More importantly, they
asked whether such a difference in mortality within
their sample could have caused the dose-response
“gradient” between amount smoked and lung cancer
death rate. “For such an effect we should have to
suppose that the heavier smokers who already knew
that they had cancer of the lung tended to reply more
often than the nonsmokers or lighter smokers in a
similar situation. That would not seem probable to
us.”23(p1454) This study has been replicated in many
other population- and clinic-based studies. It has
been generalized, in the broad scientific sense, to a
variety of other groups, populations, and settings, de-
spite the decidedly “nonrepresentative” nature of the
study group and its specific boundaries. Doll and
Hill focused on how, and how much, the definition
of their study group and its characteristics could have
influenced their results. That is, they considered how
the effects of subject selection (i.e., selection bias),
data accuracy (i.e., information bias), and unequal
distribution of other risk/protective factors between
comparison groups (i.e., confounding) could have
threatened the study’s internal validity. They also
considered “power” when they excluded younger
men and women. In this study, the “relevant” factor

concerned the potential carcinogenic effect of to-
bacco smoke on human lung tissue.

Would the designs and findings of similar studies
among restricted groups, nonrepresentative of the
universe, be as readily accepted today? Would cur-
rent readers question whether the results from British
physicians would also apply to Wichita linemen or to
real housewives from New Jersey? The British physi-
cians were likely different in many ways from groups
to which we might want to “generalize” the principal
results. But they were not fundamentally different in
ways that would affect our conclusions about the ef-
fect of tobacco smoke on lung tissue and ultimate
mortality.

Science proceeds by replication and by generaliza-
tion of individual study results into broader hypoth-
eses, theories, or conclusions of fact. Establishing
study boundaries and conducting “population-
based” research within them enhances both internal
validity and the likelihood that results may apply to
similar and dissimilar groups. However, studies of
specifically defined groups may also generalize to ex-
tend our knowledge. We could yield to temptation
and seize the low-hanging fruit, vaguely challenging a
study on grounds of generalizability. But then we
would miss the forest for the trees.
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